Ena on construction of $M U_{\mathbb{R}}$ and its slice differentuals
Recull Chdams SS $E_{2}=\operatorname{ExA}_{A}^{1, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Rightarrow \pi_{* s} S_{2}^{1} \rightarrow \pi_{x, s} \Omega$
$h_{j}^{2} \longrightarrow \theta_{j} \longrightarrow \neq 0$

$M V_{\mathbb{R}}$ is a C_{2}-xpedrum, i'e. a evilable funston

$$
V \longmapsto ? ~
$$

$$
n p=\mathbb{C}^{n} \longmapsto M U(n)
$$

$B \cup(n)$ claseifics \mathbb{C}^{3} - vector foundlos
C_{2} acts on everything in eight
What about other V

We need to replace MU by cofilmant replarement

$$
M U_{\mathbb{R}} a \text { hocolim } s^{-n \rho_{2}} M U(n)
$$

- $\Phi^{C_{2}} M U_{\mathbb{R}} \sim$ hocolim $S^{-n} _M O(n) \sim M O$
- MU \mathbb{R} is a comm ring epectrum $G=C_{8}$

$$
M U^{((a))}:=N_{C_{2}}^{C_{8}} M U_{\mathbb{R}} \text { ao } \Phi^{C_{2}} M U^{(/ G))}=M O
$$

Want to dexcimbe elts in $\pi_{*} M U^{(G G)}$ and compute a celice differental.

Eth in $\pi_{x} M U^{((G))}$
Thu $\exists r_{1} \in \pi_{21}^{M} M U^{((G))} s \cdot x$.

- they "generate" $\pi_{\alpha}^{u}\left[M U^{(l(G))}\right]=Z_{(2)}\left[\begin{array}{rr}j j_{1} & i \geq 0 \\ 0 \leq j<3\end{array}\right]$
- have good fixed pint propertir

The $\oplus_{j \geq 0}^{\infty} \pi_{j P_{2}}^{c_{2}} M U_{\mathbb{R}} \cong \bigoplus_{j \geq 0} \pi_{2 j}^{n} M U_{\mathbb{R}}$

Recall $M U^{((G))} \underset{c_{2}}{\sim} M U_{\mathbb{R}}^{14}$

$$
\begin{aligned}
& \bar{\mu}_{1} \longleftarrow \mu_{i} \\
& N_{2}^{8} \bar{\mu}_{1} \in \pi_{i P_{G}} M U^{((G))} \\
& \text { defined as } \\
& \text { follows } \\
& {\left[s^{i p_{2}}, i_{2}^{8} M U^{((G))}\right]} \\
& \downarrow N_{2}{ }^{8} \\
& {\left[S^{i p_{8}}, N_{2}^{8} i_{2}^{8} M U^{((l))}\right]} \\
& 51 \\
& {\left[S^{i \rho_{8}},\left(M U^{(l G))}\right)^{14}\right]} \\
& \downarrow \text { Co mint } \\
& {\left[S^{i p_{8}}, M U^{((6))}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{*} M O \cong Z_{k}\left[h_{1}^{\prime}: i \neq 2^{k}-1\right] \\
& N \bar{\mu}_{1}
\end{aligned}>h_{i} \quad\left(040 \text { if } i=2^{k}-1\right)
$$

Ahice SS reven
Can get RO(G) SS

$$
E_{2}^{1, v}=\pi_{v-s}^{c n} P_{|v|}^{|v|} X \Rightarrow \pi_{v-\infty}^{G} X
$$

Fix $V=* 2 k \sigma$ intager
$P^{i} X \longleftarrow P^{\prime} X$

In oenenal P_{n}^{n} is hand tut $\underset{k \in Z}{ } P_{k}^{k}\left(\begin{array}{c}\text { medguld } \\ k \text { nind } \\ k \text {-ulf }\end{array}\right)$ $k \in z \quad k$-ulls

$$
N Z_{1} \text { (smme slicecels) }
$$

Sice theorem
7 map $b: V$ ehice $\longrightarrow M U^{(l G))}$ which is an equwalence on P_{n}^{n}

$$
\begin{aligned}
& S^{0}\left[S^{v}\right]:=V_{n}\left(S^{v}\right)^{1 n} \text { if } S^{v} \xrightarrow{v} S^{0}\left[S^{v}\right] \\
& S^{0}[x]:=S\left[S^{v}\right]
\end{aligned}
$$

Our medpe of ehice culls is

$$
\begin{aligned}
& S^{0}\left[\gamma^{j} \mu_{1}: i \geq 1,0 \leq j \leq 3\right] \\
& H Z \wedge S^{0}\left[\gamma^{j} \mu_{i}\right] \xrightarrow{\leftrightharpoons} V P_{n}^{n} M U^{((G))}
\end{aligned}
$$

Elements in $E_{2} \quad " S^{*+* \sigma} \longrightarrow H Z \wedge S^{0}\left[C_{1} \cdot M_{1}\right]$

$$
V{\underset{\sim}{n}}_{P_{n}^{\imath}}^{\imath \imath} M U^{((G))}
$$

$$
\begin{gathered}
\cdot a=a_{\sigma}: S^{0} \rightarrow S^{\sigma} \longrightarrow S^{\sigma} \neg H Z \\
a_{6} \in \pi_{-\sigma} H Z
\end{gathered}
$$

- $\mu=\mu_{2 \sigma}:$ Fon ony V, Res $H_{|v|}^{G}\left(S^{v}, Z\right) \stackrel{\Xi}{\rightrightarrows} H_{\mid V}^{M}\left(S^{v} ; z\right)$
for V is onexitable
($2 V$ is onintable forn my V, $1 \cdot g \cdot 2 \sigma$ is orientable

$$
\mathcal{u}_{26} \in \pi_{2-20} H Z
$$

$$
\cdot \quad \int_{a}^{i P_{a}} \xrightarrow{2-2 \sigma} N_{r_{i}} S^{0}\left[G \cdot \bar{r}_{i}\right] \rightarrow M U^{\left(\left(G_{n}\right)\right)}
$$

$$
E^{*}, *-2_{6}
$$

produch of fi's

Sketch of proof
a) All elements in blue region ard deeprifeed $\left\{\begin{array}{l}a^{2^{k}} 21 \\ M_{20}^{l} \\ 0 \leq l \leq 2^{k-1}\end{array}\right\} \otimes P\left(f_{1}\right)$
b) renting a leads us to MO, so

$$
\pi_{*} \Phi^{6} X \cong a^{-1} \pi^{6} X
$$

since $f_{2}^{2 k} \rightarrow h_{2 k_{1}}=0$ in $\pi_{x} M O$
c) $a^{?} f_{2 n}^{n}$ must die,
d) At has to be $a^{2^{k}} f_{2}^{k-1}$, by calculation
e) Source must be $\mu^{2^{k-1}}$. Teemelucliod on k. Can aroume n^{l} one for $l<2^{k-1}$ The pi and a are permanent uncles so $a^{2^{k}-2 l} u_{1} b^{?}$ are gone
 $a^{2^{k}} b_{2}^{k}=1$ is still here This is its last champ有die

$$
\begin{aligned}
& a_{6} \in E_{2}^{1,1-\sigma}=\pi_{-\sigma} P_{0}^{0} M U^{(G G))} \\
& f_{i} \in E_{2}^{(g-1) i, g_{i}}=\pi_{i} P_{g_{1}}^{g_{i}} M U^{(l(G))} \\
& u \in E_{2}^{0,2-2 \sigma}=\prod_{2,26} P_{0}^{0} M U^{((G a))}
\end{aligned}
$$

